Partager à toutes et tous (enfin ceux que ça intéresse) ce que je note sur le net

Aller au contenu | Aller au menu | Aller à la recherche

L'Homme réparé - la nanotransfection de tissus par patch de nanopuces

Le principe est prometteur: réparer un tissu/organe en lui déposant un film de nanopuces qui peuvent "délivrer des gènes" afin de forcer à créer/réparer le tissu manquant.

Cool, mais perso la partie "délivrer des gènes" par induction d'un champ électrique pour faire pénétrer des gènes... mouaip, ça fait un tout petit peu "savant ouf'" ;)
Rappel, un gène c'est un code génétique qui peut être lu et interprété par une cellule pour effectuer une action... ici je suppose stimuler la division cellulaire ?  La guider ?  Différencier les cellules ?  Et oui:

Lors de tests menés sur des animaux, les scientifiques ont pu utiliser la technique TNT pour reprogrammer les cellules de la peau à l’extérieur des pattes blessées, pour en faire des cellules vasculaires, ce qui est essentiel pour réguler un flux sanguin sain dans le corps. En une semaine, les vaisseaux sanguins actifs sont apparus aux endroits blessées, et durant la deuxième semaine, les éléments ont pu être sauvés grâce à la technique.

Ça a l'air si simple que c'en est... presque effrayant.

La papage sur osu.edu: osu.edu (down à cette heure)

Source:

Un dispositif à nanopuce permet de guérir le tissu humain simplement en entrant en contact avec la peau

Tissue Nanotransfection (TNT) nanotransfection de tissus.jpg
trustmyscience.com

La vidéo:

Crédits:

14 août 2017

(COLUMBUS, Ohio) – Researchers have developed a device that can switch cell function to rescue failing body functions with a single touch. The technology, known as Tissue Nanotransfection (TNT), injects genetic code into skin cells, turning those skin cells into other types of cells required for treating diseased conditions. “It takes just a fraction of a second. You simply touch the chip to the wounded area, then remove it,” said Chandan Sen, PhD, director of the Center for Regenerative Medicine and Cell-Based Therapies at The Ohio State University Wexner Medical Center. “At that point, the cell reprogramming begins.” In a series of lab tests, researchers applied the chip to the injured legs of mice that vascular scans showed had little to no blood flow. “We reprogrammed their skin cells to become vascular cells,” Sen said. “Within a week we began noticing the transformation.” By the second week, active blood vessels had formed, and by the third week, the legs of the mice were saved—with no other form of treatment. “It extends the concept known as gene therapy, and it has been around for quite some time,” said study collaborator James Lee, PhD, a professor of chemical and biomolecular engineering at Ohio State. “The difference with our technology is how we deliver the DNA into the cells.” The chip, loaded with specific genetic code or certain proteins, is placed on the skin, and a small electrical current creates channels in the tissue. The DNA or RNA is injected into those channels where it takes root and begins to reprogram the cells. In a new study published in Nature Nanotechnology, first author Daniel Gallego-Perez of Ohio State demonstrated that the technique worked with up to 98 percent efficiently. “What’s even more exciting is that it not only works on the skin, but on any type of tissue,” Sen said. In fact, researchers were able to grow brain cells on the skin surface of a mouse, harvest them, then inject them into the mouse’s injured brain. Just a few weeks after having a stroke, brain function in the mouse was restored, and it was healed. Because the technique uses a patient’s own cells and does not rely on medication, researchers expect it to be approved for human trials within a year.